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SUMMARY
Trajectories of cognitive decline vary considerably among individuals with mild cognitive impairment (MCI).
To address this heterogeneity, subtyping approaches have been developed, with the objective of identifying
more homogeneous subgroups. To date, subtyping of MCI has been based primarily on cognitive measures,
often resulting in indistinct boundaries between subgroups and limited validity. Here, we introduce a subtyp-
ing method for MCI based solely upon brain atrophy. We train a deep learning model to differentiate between
Alzheimer’s disease (AD) and cognitively normal (CN) subjects based on whole-brain MRI features. We then
deploy the trained model to classify MCI subjects based on whole-brain gray matter resemblance to AD-like
or CN-like patterns. We subsequently validate the subtyping approach using cognitive, clinical, fluid
biomarker, and molecular imaging data. Overall, the results suggest that atrophy patterns in MCI are suffi-
ciently heterogeneous and can thus be used to subtype individuals into biologically and clinically meaningful
subgroups.
INTRODUCTION

Mild cognitive impairment (MCI) is often construed as the transi-

tional stage between normal aging-related cognitive decline and

Alzheimer’s disease (AD).1,2 However, MCI is associated with

marked etiological heterogeneity.3 While the yearly risk of pro-

gression from MCI to AD is set at around 10%–12%,4–6 not all

individuals with MCI eventually progress to AD and many

demonstrate different outcomes, including the development of

non-AD dementia or other neuropsychiatric conditions,7,8 or

reversion to cognitively normal (CN) status.9 Despite its ubiquity,

the heterogeneity of MCI with respect to rates of cognitive

decline and progression to AD remains poorly understood, chal-

lenging further progress in research and care.

Attempts to constrain the heterogeneity of MCI via subtyping

approaches have been proposed by several groups,10–12 almost

exclusively relying on cognitive subtyping, that is, classification

into subtypes, which is based on subjects’ performance in

cognitive tests and tasks.11,13 For example, a common subtyp-

ing framework defines individuals with MCI as amnestic and

non-amnestic, depending on whether or not memory loss is a

predominant feature.11 Other common subtyping approaches
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further classified MCI as being either single or multiple domain

as a function of the number of cognitive domains where decline

is observed.14 More recently, studies have shown that a more

comprehensive subtyping for MCI can be achieved based on

similarities in neuropsychological test scores using clustering

techniques.15,16

While cognitive subtyping has been instrumental in delineating

the various dimensions of cognitive performance that are affected

inMCI, cognitive subtypes showheterogeneity in their longitudinal

trajectories and clinical outcoms17,18 and may not be sufficiently

distinct from one another18 in capturing rates of cognitive decline

and progression to AD. In recent years, a shift in the definition of

preclinical, prodromal, and clinical AD from a syndromic to a bio-

logical construct has been suggested.19 Indeed, the recently pro-

posed ‘‘AT(N)’’ framework for AD research20,21 attempts to pro-

vides accurate, biologically centered definitions for AD research

based on multi-domain biomarkers for b-amyloid deposition

(‘‘A’’), pathologic tau (‘‘T’’), and neurodegeneration (‘‘N’’). Bio-

markers for neurodegeneration, however, particularly those based

on structural MRI, are not specific to AD, and alterations in their

levelsmaybeattributable to variousother comorbidities.19Conse-

quently, the degree to which heterogeneity in atrophy patterns in
s Medicine 2, 100467, December 21, 2021 ª 2021 The Author(s). 1
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Table 1. Demographics

ADNI

AD (A+T+) CN (A�T�) MCI

n 110 109 380

Age 72.91 (8.03) 70.98 (5.32) 72.15 (7.19)

Gender, female 46 (41.82%) 57 (52.29%) 166 (43.68%)

ADAS 21.97 (7.03) 6.97 (3.05) 9.64 (4.43)

CDR-SB 4.58 (1.72) 0.0 (0.07) 1.49 (0.89)

MMSE 21.97 (7.03) 29.09 (1.06) 27.98 (1.74)

A b42 (pg/mL) 597.79 (158.44) 1454.75 (247.64) 987.22 (425.97)

p-tau181 (pg/mL) 40.41 (14.97) 16.4 (2.82) 27.59 (14.91)

Continuousvariablesarepresentedasmeans,withSDsandcategorical var-

iables are presented as percentages in parentheses. AD, Alzheimer’s dis-

ease; CN, cognitively normal; MCI, mild cognitive impairment; N, number

of subjects;ADAS,Alzheimer’s disease assessment scale; CDR-SB,clinical

dementia rating sum of boxes;MMSE,mini-mental state exam; A b42, beta-

amyloid 42; p-tau181, phosphorylated-tau 181; SD, standard deviation.
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MCI can be leveraged to subtype individuals into homogeneous

subgroups, showing similar clinical outcomes, as was done in

AD,22–25 remains unclear.

In the current study, we tested whether patterns of brain atro-

phy, derived fromMRI, are sufficient in allowing for the subtyping

of MCI into biologically and clinically distinct subgroups. We pro-

pose and validate a novel data-driven subtyping approach based

upon deep learning.We first train a dense convolutional neuronal

network (CNN) todifferentiate betweenA+T+ADpatients (i.e., AD

patients with pathologic changes) and A�T� CN subjects (i.e.,

CN subjects with no pathologic changes) based on whole-brain

graymatter (GM)morphometric data.We then deploy the trained

CNN to classifyMCI subjects into two subgroups, corresponding

to MCI subjects with AD-like and CN-like morphometric charac-

teristics,26 respectively. We also identified the major regional

atrophy patterns contributing to the differentiation between the

two MCI subgroups through occlusion analysis.27 The resulting

labels were then validated against cerebrospinal fluid (CSF) bio-

markers for b-amyloid (Ab) and tau, baseline fluorodeoxyglucose

(FDG) and Ab-positron emission tomography (PET), as well as

baseline and longitudinal cognitive scores. Finally, we evaluated

the degree of overlap between the modeling-based labels and

those obtained through cognitive subtyping.
RESULTS

Participant characteristics
We analyzed data from 489 subjects, obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

An additional sample of 78 MCI subjects was obtained from

the Open Access Series of Imaging Studies-3 (OASIS-3) data-

base28 and used as an independent validation cohort. Our pro-

posed modeling approach (see STAR Methods) utilized AD and

CN data for training, and MCI data for testing. Following the pro-

posed NIA-AA guidelines,19 AD subjects were included in the

analysis if they displayed abnormal CSF Ab42 and p-tau181 levels

(denoted henceforth as A+T+). CN subjects were included in the

analysis only if they displayed normal CSF Ab42 and p-tau181
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levels (henceforth, A�T�). The demographic characteristics of

subjects in all groups are shown in Table 1. When comparing

the AD, CN, and MCI groups (Table S2), there were significant

difference in Clinical Dementia Rating Sum of Boxes (CDR-SB:

F2,596 = 458.2, p < 0.001), Alzheimer’s Disease Assessment

Scale (ADAS: F2,596 = 177.90, p < 0.001), and CSF biomarker

concentrations (Ab42: F2,596 = 146.45, p < 0.001, p-tau181:

F2,596 = 86.08, p < 0.001). Post hoc comparisons with the Tukey

test revealed significant pairwise difference (all p’s < 0.001) be-

tween the three groups in all cognitive measures and CSF

biomarker concentrations. No significant differences were

observed between the groups in age (F2,596 = 2.16, p = 0.12) or

gender distribution (c2 = 3.06, p = 0.22).

A deep learning model for subtyping MCI subjects
Our major objective in the current study was to develop a deep

learning modeling framework for subtyping MCI. To that end,

we utilized a dense CNN architecture (Figure 1),29 which relies

on whole-brain GM density as input data. The model was first

trained to differentiate AD and CN subjects, with the assumption

that these two distinct groups would provide the model with an

adequate distribution of morphometric features sufficient for

subtyping MCI subjects. Data augmentation was applied within

the training data to increase its size and improve the perfor-

mance of the model and its generalizability. As a result, a total

of 14,016 images were generated for training the model. We

used 5-fold cross-validation within the training set to optimize

and fine-tune the model’s performance, finding similar perfor-

mance across the different folds (Figure S1A). The model with

the best performance achieved maximal accuracy of 93.75%,

with an area under the curve (AUC) of the receiver operating

characteristic (ROC) of 0.983 (Figure S1A). The model achieved

better performance than other standard machine learning classi-

fication models including support vector machine, random for-

est, and logistic regression (Figure S1B). We thus subsequently

deployed the model on the MCI data (Figure 1), formalized as a

binary classification problem with class labels AD and CN.

Then, output values less than the default threshold of 0.5 were

assigned to the class MCI-CN, and values greater than or equal

to 0.5were assigned to the classMCI-AD.We testedwhether the

threshold of 0.5 was appropriate, given the distribution of the

model’s output, finding that in both the training and testing data-

sets this threshold value was at a location in the distribution with

little variance around it (Figure S1C). We additionally retrained

the model with T1 intensity values, replacing GM density. AUC

of the ROC was similar to that obtained when using GM density,

while the accuracy of the model was lower (Figure S1D).

Validation of model-based MCI subgroups with CSF
biomarker concentrations and cognitive scores
We investigated 380 MCI subjects (57.4% were CSF Ab42 posi-

tive; 56.6% were p-tau181 positive). Our data-driven approach

for subtyping MCI resulted in two subgroups, MCI-AD and

MCI-CN. We next assessed the validity of these two data-driven

labels. We first compared the prevalence of the various

biomarker profiles19 in each of the subgroups, based on each

subject’s CSF Ab42 and p-tau181 biomarkers. Each subject was

rated as either positive (i.e., abnormal) or negative (i.e., normal)



Figure 1. Study methods

Illustration of proposed deep learning framework. A dense convolutional neural network is trained to differentiate patients with Alzheimer disease (AD) and

cognitively normal (CN) controls based on whole-brain GM morphometric data. Subsequently, the trained model is deployed to classify individuals with mild

cognitive impairment (MCI), into two groups, MCI-AD and MCI-CN, based on structural morphometric data. AD, Alzheimer’s disease; CN, cognitively normal;

MCI, mild cognitive impairment; GM, gray matter.
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in each biomarker, based on previously published cutoff values19

(see Figure S2). This resulted in four different profiles (A+T+,

A+T�, A�T+, and A�T�, where ‘‘A’’ denotes Ab, and ‘‘T’’ de-

notes tau) (Figures 2A and 2B). The prevalence of the biomarker

profiles differed significantly between the MCI-AD and MCI-CN

subgroups (c2 = 21.40, p < 0.001). In particular, subjects with

an abnormal CSF Ab42 or p-tau181 were more common in the

MCI-AD (CSF Ab42: 71.6%; p-tau181: 69.3%) than in the MCI-

CN group (CSF Ab42: 50.6%; p-tau181: 50.2%). Subjects with

an abnormal CSF Ab42 and p-tau181 were more prominent in

the MCI-AD (A+T+: 55.1%) than in the MCI-CN group (A+T+:

32.8%). In contrast, subjects with a normal CSF Ab42 and p-

tau181 were more common in the MCI-CN (A�T�: 32.0%) than

in MCI-AD group (A�T�: 14.2%).

We then investigated baseline differences in demographic

characteristics, cognitive scores, and continuous CSF concen-

trations between the MCI-AD and MCI-CN subgroups. There

was a significant difference between the two subgroups in

age (t378 = 6.44, p < 0.001), but not in gender distribution

(c2 = 3.49, p = 0.06). Comparing cognitive scores between

the MCI-AD and MCI-CN subgroups reveled significant differ-

ences in CDR-SB (t378 = 3.46, p < 0.001; Figure 2C) and

ADAS (t378 = 6.51, p < 0.001; see Figure S3A) scores. All signif-

icant results were retained when controlling for age (all p <

0.01). The comparison of CSF concentrations between the

MCI-AD and MCI-CN subgroups revealed significant differ-

ences in CSF Ab42 (t378 = 4.55, p < 0.001; Figure 2D) and CSF

p-tau181 (t378 = 3.81, p < 0.001; Figure 2E). The significant re-

sults were retained when controlling for age (both p < 0.001).

Moreover, group differences between the MCI-CN and MCI-
AD groups were retained when varying the threshold used for

binary classification (Figures S3B–S3J), again suggesting that

the specific value used for classification had little effect on

the reported results.

Comparison of PET uptake in subtyped MCI
We next assessed group differences in PET uptake, focusing on

Ab- and FDG-PET. While Ab-PET and CSF measures of Ab are

generally properly correlated with one another, a certain degree

of discordance between the two markers has been consistently

reported.30,31 Our analysis above revealed that the MCI-AD and

MCI-CN subgroups differed in CSF Ab42 levels. We thus next

aimed to complement this analysis by also comparing the

subgroups across Ab-PET. There were significant differences

between the two subgroups in Ab-PET (t377 = 4.36, p < 0.001;

Figure 3A), with lower levels observed in the MCI-AD group,

relative to the MCI-CN group. We have additionally examined

group differences in FDG-PET uptake. Metabolic imaging

studies utilizing FDG-PET for AD diagnosis are common,32

and this modality has been proposed as a reliable and valid

marker for neurodegeneration in AD.19 We observed significant

group differences in FDG-PET (t377 = 5.53, p < 0.001; Figure 3C),

with lower uptake values obtained in the MCI-AD group. Group

differences in both Ab-PET and FDG-PET were retained after

adjusting for the effect of age. We have additionally assessed

group differences in PET uptake, comparing normal/abnormal

uptake values after binarizing the data with established cutoff

values.33,34 The prevalence of normal and abnormal Ab-PET

and FDG-PET differed between the two subtyped subgroups

(Figures 3B and 3D). These differences were apparent in both
Cell Reports Medicine 2, 100467, December 21, 2021 3



Figure 2. Validation of the MCI subgroups

using fluid biomarker and cognitive data

Subjects in the MCI-AD and MCI-CN groups were

rated as Amyloid (A) and p-tau (T), positive or

negative, based on the CSF A b42, and p-tau181
biomarkers. Pie charts depict the biomarker score

combinations in the MCI-AD (A) and MCI-CN (B)

subgroups. These score distributions were signifi-

cantly different between the two subgroups. Bar

plots showdifferences in CDR-SB scores (C), CSF A

b42 (D), and CSF p-tau181 (E). Bar graphs depict

means ± SEs. AD, Alzheimer’s disease; CN,

cognitively normal; MCI, mild cognitive impairment;

CDR-SB, clinical dementia rating sum of boxes.

***p < 0.001.
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Ab-PET and FDG-PET (Ab-PET: c2 = 12.35, p < 0.001; FDG-

PET: c2 = 14.70, p < 0.001). In particular, there were more sub-

jects with abnormal Ab-PET in the MCI-AD (Ab-PET+: 71.4%)

than in MCI-CN group (Ab-PET+: 52.6%). Similarly, abnormal

FDG-PET was more common in the MCI-AD (FDG-PET+:

48.4%) than in the MCI-CN group (FDG-PET+: 28.5%).

Contribution of regional atrophy to MCI subtyping:
Occlusion analysis
The results suggest that patterns of whole-brain GM are sufficient

for differentiatingMCI subjects into two distinct subgroups. As our

approach utilizes whole-brain GM features, the major regional

contributors to the model’s output remain unclear. We thus next

examined the relative lobar (frontal, parietal, medial temporal,

lateral temporal, occipital, and cingulate) contribution to the per-

formance of the model, through occlusion analysis, as proposed

previously.27 Briefly, we retested the deep learning model itera-

tively, occluding a bilateral binary mask composed of each lobe

from themodel’s test-set input data (Figure4A). Thiswasachieved

by setting the intensity values of each lobe to zero on each itera-

tion. The percentages of change in the model’s output, with

respect to the original results for classifying MCI subgroups were

ranked and then compared across the different occluded lobes

(seeFigure4B).We foundthat theocclusionof themedial temporal

and lateral temporal lobes led to dramatic changes in the model’s

output (Figure 4C), relative to the original results. On the other

hand, occlusion of the occipital and cingulate lobes had relatively

little effect, resulting inmodel output that resembled theoriginal re-

sults (Figure 4C). Thus, the medial and lateral temporal lobes had

the largest impact on the performance of the model and on the

classification of MCI subjects into two distinct subgroups.

Longitudinal analysis of cognitive changes in the MCI
subgroups
Our analysis reveals marked baseline differences between the

MCI-AD and MCI-CN subgroups. These observed differences,
4 Cell Reports Medicine 2, 100467, December 21, 2021
nevertheless, cannot be taken to imply

that the two MCI subgroups also differ in

their prognostic outcomes. We next set

out to evaluate whether the MCI-AD and

MCI-CN subgroups also exhibit differ-

ences in the progression to AD and in
longitudinal cognitive performance. This analysis focused on

subjects with data from at least three follow-up visits. Individual

trajectories of longitudinal changes in cognitive performance

varied between the two MCI subgroups (Figures 5A–5D).

Survival analysis35 revealed marked differences between the

two subgroups in their progression to AD (log-rank test; c2 =

64.40, p < 0.001), with theMCI-AD subgroup showing faster pro-

gression, relative to the MCI-CN subgroup (Figure 5E). We next

used repeated-measures analysis of variance (RM-ANOVA) to

compare changes in cognitive performance from baseline to

the second-year follow-up visit, with group (MCI-AD, MCI-CN)

as the between-subjects factor and time (baseline, follow-up)

as the within-subject, repeated-measure factor. Focusing on

CDR-SB scores (Figure 5F), this analysis revealed a significant

interaction (group 3 time; F1,358 = 14.92, p < 0.001), along with

significant main effects for group (F1,358 = 27.87, p < 0.001)

and time (F1,358 = 38.91, p < 0.001). Thus, the MCI-AD group

showed more pronounced changes in CDR-SB scores between

the testing sessions. Similarly, in the analysis of ADAS scores

(Figure 5G), a significant interaction (group 3 time; F1,358 =

7.56, p < 0.001) was observed, along with significant main ef-

fects for group (F1,358 = 5.92, p = 0.02), and time (F1,358 =

87.12, p < 0.001).

Validation in an independent cohort
We next validated our subtyping approach with data from the

OASIS-3 dataset (Table S1). The MCI samples in the ADNI and

OASIS-3 datasets did not differ in age (t = 1.4, p = 0.16) or gender

distribution (c2 = 0.04, p = 0.84). We first identified MCI-AD and

MCI-CN subjects in the OASIS-3 sample, using the same

approach described above. Survival analysis showed that,

similar to the original test data, there was a significant difference

between the subgroups in their progression to AD (log-rank test;

c2 = 22.6, p < 0.001), with the MCI-AD subgroup showing faster

progression over time, compared to the MCI-CN group (Fig-

ure S4A). Similar to the original testing data, the MCI-AD and



Figure 3. Comparison of the MCI subgroups

using PET uptake data

Bar plots show the comparison of A b-PET (A) and

FDG-PET (C) uptake between theMCI-AD andMCI-

CN subgroups. In both measurements, group dif-

ferences were statistically significant. Pie charts

depict the proportion of subjects in the MCI-AD and

MCI-CN subgroups with normal and abnormal A

b-PET (B) and FDG-PET (D). The distributions of

normal and abnormal PET uptake values were

significantly different between the two subgroups

(Ab-PET: c2 = 12.35, p < 0.001; FDG-PET: c2 =

14.70, p < 0.001). Bar graphs depict means ± SEs.

AD, Alzheimer’s disease; CN, cognitively normal;

MCI, mild cognitive impairment; A b-PET, beta-

amyloid positron emission tomography; FDG-PET,

fluorodeoxyglucose-positron emission tomogra-

phy. ***p < 0.001
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MCI-CN subgroups also showed longitudinal differences in

cognitive performance (mini-mental state exam [MMSE] scores)

observed over a period of 2 years (Figure S4B). Namely, a signif-

icant interaction effect was observed between group and time in

the validation cohort (F1,76 = 7.34, p < 0.01), alongwith significant

main effects for group (F1,76 = 10.97, p < 0.005) and time (F1,76 =

7.44, p < 0.01).

Different atrophy levels in the MCI subgroups
One possibility that emerges from the findings reported above is

that subjects in theMCI-AD andMCI-CN subgroupsmerely differ

in levels of atrophy since they are at different phases of AD. How-

ever, a closer comparison of longitudinal data from the two sub-

groups also reveals marked differences in the rate of atrophy

changes they display. Namely, we calculated the annualized

rate of hippocampal atrophy, a common marker of neurodegen-

eration,36 expressed in percentages of volume loss relative to

baseline.37 The annual rate of hippocampal atrophy was signifi-

cantly (p < 0.001) reduced in the MCI-AD (annual rate: 3.77 ±

2.98%) than in the MCI-CN group (annual rate: 1.72 ± 2.67%),

while no significant differences (p = 0.50)were observed between

MCI-CN and CN subjects (annual rate: 1.52 ± 2.22%).

Concordance between the proposed MCI subtyping
approach and cognitive subtyping
The data-driven approach proposed here subtypes MCI sub-

jects solely based on patterns of whole-brain GM volume. As

the vast majority of existing subtyping approaches for MCI are

based on cognitive profiles,18 we wished to determine the extent

of concordance between the current MCI subtyping approach

and cognitive subtyping. We focused the comparison on a

recently introduced subtyping method where neuropsychologi-

cal assessments are clustered into distinct subgroups.15 We first

clustered subjects (n = 374 subjects who had available data)

based on their neuropsychological assessments (Table S3).

This resulted in four subgroups: dysnomic (37.43% of subjects),

amnestic MCI (36.63%), dysexecutive (6.95%), and cluster-

derived normal (18.98%) (Figure 6A). When testing the prediction
of disease-free survival observed when using this subtyping

approach, we found a large degree of overlap among three of

the four subtypes (Figure S5A). The four subgroups showed sig-

nificant group differences in the six neuropsychological assess-

ments used for clustering (p < 0.001). Performance in none of the

cognitive domain scores showed a better predictive perfor-

mance than that of our model (Figure S5B). Post hoc compari-

sons with the Tukey multiple comparison test revealed that the

dysnomic group performed worse than all other groups in five

of six measures of language. The dysexecutive group performed

worse than all other groups in assessments of attention/execu-

tive function, and the amnestic MCI group performed worse

than the dysnomic and cluster-derived normal groups in assess-

ments of memory function. Thus, the clustering of neuropsycho-

logical assessments resulted in distinct MCI subtypes, as

previously reported.15 We next compared the distributions of

the neuropsychological subtypes within the MCI-AD and MCI-

CN subgroups. We found significant differences between the

two distributions (c2 = 30.45, p < 0.001), observing more dys-

nomic and dysexecutive subjects in the MCI-AD (60%) than in

the MCI-CN group (36.5%). On the other hand, as expected,

the cluster-derived normal profile, which shows the normal range

of scores across all neuropsychological measures, was more

common in the MCI-CN (24.9%) than in the MCI-AD group

(7.2%). Interestingly, the prevalence of the amnestic MCI profile

was similar between the MCI-AD (32.8%) and MCI-CN sub-

groups (38.6%). Altogether, while both the MCI-AD and MCI-

CN subgroups displayed impairments in memory function, the

former subgroup displayed more significant deficits in atten-

tion/executive and language function than the latter subgroup.

DISCUSSION

Subtyping approaches forMCI have been proposed as a remedy

for the large etiological heterogeneity characteristic of this

elusive stage in cognitive aging. Current subtyping approaches

primarily rely on neuropsychological profiles and may often

result in blurred boundaries between subgroups and limited
Cell Reports Medicine 2, 100467, December 21, 2021 5



Figure 4. Identifying the major contributors to atrophy-centered subtyping of MCI via occlusion analysis

(A) Schematic illustration of the occlusion analysis. The testing phase in the deep learning model was repeated, whereby in each step cortical lobes were

occluded from the input data (temporal lobes were further divided to medial and lateral). The percentages of change with respect to the original results for

classifying MCI subgroups were ranked.

(B) The results of the occlusion analysis are shown, in each tested lobe. Shown are percentages of change with respect to the original intact model.

(C) Percentage of change following occlusion analysis, in each cortical lobe, superimposed on medial and lateral cortical surface models.

MCI, mild cognitive impairment.
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validity.18 Here, we propose a novel data-driven subtyping

approach, which utilizes CNNs to divide MCI subjects into sub-

groups based on the extent to which their brain atrophy patterns

resemble those observed in AD as opposed to CN subjects. This

approach resulted in two subgroups, MCI-AD and MCI-CN, de-

noting closer correspondence in GM patterns with data from AD

and CN subjects, respectively. We then comprehensibly vali-

dated the model-based subgroups, findings marked group dif-

ferences in baseline CSF biomarker concentrations and PET

uptake, along with annual rate of hippocampal volume loss,

and baseline and longitudinal cognitive performance scores.

The latter differences were also validated using an independent

dataset. Through occlusion analysis,27 we also investigated

lobar contributions to the performance of the deep learning

model, reporting that it mostly relied on GM volume from the

medial and lateral temporal lobes. Finally, we found a limited de-

gree of overlap between the current subtyping approach and

that based on neuropsychological examination.

The purpose of the current study was to test whether distinct

subgroups with differing structural brain atrophy patterns could

be delineated within a heterogeneous clinical sample of individ-

uals diagnosed with MCI. Rather than providing an AT(N)-like

subtyping solution for MCI, our goal was to investigate whether

the heterogeneity of MCI as it pertains to rates of cognitive

decline and progression to AD can be captured using an imaging

biomarker of neurodegeneration. To that end, we utilized a deep

learning framework, rather than other machine learning models,

such as support vector machine, primarily since there has been a

growing body of research demonstrating the utility of deep

learning models based onMRI-derived features in various tasks,

such as diagnostic prediction,38 image reconstruction39 and

segmentation,40 and prognostic prediction of disease progres-

sion.41 Our choice to utilize a deep learning framework was

furthermotivated by the assumption that complex and non-linear

relationships exist between whole-brain structure and progres-

sion of MCI/AD. Our chosen model indeed outperformed other

standard machine learning models in the task of differentiating
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data from AD and CN subjects. Similar to other machine and

deep learning models where ‘‘transfer learning’’42 is applied,

we propose a classification framework that is trained on a

domain different than the one being tested.43–45 However, rather

than evaluating the performance of the model against clinically

defined labels (e.g., progressive and stable MCI, or AD conver-

tors and non-convertors), our approach was to re-label data

from individuals with MCI based on its proximity to the model’s

trained labels, that is, AD and CN.

We found robust differences between the MCI-AD and MCI-

CN subgroups in CSF biomarker concentrations, cognitive

scores, annual rate of hippocampal atrophy, and PET uptake,

suggesting that our data-driven method subtypes MCI into bio-

logically and clinically distinct subgroups. Moreover, the preva-

lence of biomarker profiles, defined based on established cutoff

thresholds for the CSF Ab42 and p-tau181 biomarkers differed

significantly between the MCI-AD and MCI-CN subgroups.

Namely, abnormal CSF Ab42 (A+) and p-tau181 (T+) were more

prevalent in the MCI-AD group. These findings are consistent

with earlier studies where it was shown that positive CSF

biomarker concentrations can predict conversion from MCI to

AD with accuracy larger than 80%.46,47 We additionally found

more pronounced cognitive impairment, as assessed with the

CDR-SB and ADAS scores, in the MCI-AD subgroup, relative

to the MCI-CN subgroup. The two subtyped subgroups also

exhibited marked differences in Ab-PET, a marker of amyloid

deposition, and FDG-PET, a commonly usedmarker of neurode-

generation.19 The topographical distribution of Ab deposition,

assessed with PET is predicative of progression of individuals

with MCI to AD,48 with abnormalities appearing long before the

onset of clinical symptoms.49 The Ab-PET abnormalities

observed in the MCI-AD subgroup, where longitudinal cognitive

outcomes were poorer and progression to AD was quicker, are

consistent with these findings. Similarly, the finding that negative

FDG-PET was more predominant in the MCI-CN subgroup is

consistent with the observation that negative FDG-PET is highly

predictive of clinically stable MCI.50



Figure 5. Longitudinal comparison of the MCI subgroups

(A–D) The plots show longitudinal changes in cognition and clinical rating scores, observed at baseline and at the second-year follow-up. Longitudinal changes

are shown for CDR-SB scores (A and B) and ADAS scores (C and D).

(E) Kaplan-Meier plots depicting disease-free survival in the MCI-AD and MCI-CN subgroups. The MCI-CN group showed significantly better disease-free

survival over time (log-rank test). Shaded areas depict confidence intervals. Longitudinal changes in CDR-SB scores (F) and ADAS scores (G), displayed by the

two MCI subgroups, tested with a RM-ANOVA. MCI, mild cognitive impairment; CDR-SB, clinical dementia rating sum of boxes; ADAS, Alzheimer’s disease

assessment scale. RM-ANOVA, repeated-measures analysis of variance.
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The recently proposed AT(N) framework20,21 provides biolog-

ically centered definitions for AD research based on biomarkers

for Ab, tau, and neurodegeneration. Unlike the latter two, howev-

er, biomarkers for neurodegeneration lack specificity, often

showing overlap with other comorbidities.19 Our results show

that patterns of brain atrophy are sufficiently heterogeneous to

allow for the subtyping of MCI into biologically and clinically

distinct subgroups. Indeed, when considering prediction of pro-

gression fromMCI to AD, our analysis revealed amarked distinc-

tion between the MCI subgroups, when using an atrophy-

centered subtyping approach, relative to neuropsychological

subtyping, which resulted in an overlap between several of the

subtypes. Our findings are consistent with the observation that

similarities in patterns of GM topography between subjects
can be used as features in a predictive model of MCI progres-

sion.51 Our approach also joins other data-driven approaches

that explored the heterogeneity of regional neurodegeneration

patterns based on structural neuroimaging in AD and related

dementias.52

We complemented the initial analysis, which relied on whole-

brain GM patterns, with an analysis that combined deep learning

classificationwith occlusion analysis.27 This allowed us to identify

the major lobar contributors to the performance of the subtyping

model. The results revealed that themedial temporal, lateral tem-

poral, and to a lesser extent the parietal lobe weremore central to

the model’s performance than other lobes. These findings are

consistent with earlier studies on AD pathology, where atrophy

was reported in the hippocampus, amygdala, and entorhinal
Cell Reports Medicine 2, 100467, December 21, 2021 7



Figure 6. Overlap between atrophy-centered and neuropsychological subtypes

(A) Hierarchical clustering on neuropsychological data was used to define four MCI subtypes within the dataset used here (dysnomic MCI, aMCI, dysexecutive

MCI, and cluster-derived normal).

(B and C) Pie charts show the prevalence of these subtypes in the MCI-AD (B) and MCI-CN (C) subgroups. The two distributions were significantly different. AD,

Alzheimer’s disease; CN, cognitively normal; MCI, mild cognitive impairment; aMCI, amnestic mild cognitive impairment. ***p < 0.001.
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cortex.26,53,54 These findings are also consistent with recent find-

ings on thepossible neuroprotective role of redundancy in the hip-

pocampus55 and other large-scale brain networks,56 which may

contribute to the observed differences between the subgroups.

Our results also suggest that the occipital lobe played a more mi-

nor role in the performance of the model, consistent with Braak’s

staging scheme,57 where the occipital lobe is shown to be

affected only at later stages of AD.58 Although our results highlight

the central role of themedial and lateral temporal lobes in the sub-

typingofMCI, further examination into thepossible involvement of

other cortical and subcortical regions is warranted.

One question that arises is whether the MCI-AD and MCI-CN

subgroupsmerely reflect different stages along the course of AD,

or rather reveal distinct MCI subtypes. Our findings show that the

two subgroups differed not only in their underlying patterns of

neurodegeneration but rather also in biomarker composition

(i.e., combination of A and T biomarkers), PET uptake, and cur-

rent and subsequent clinical presentation. Moreover, we found

that the two subgroups exhibited different annual rates of hippo-

campal atrophy,59 with the one found in theMCI-CN group being

indistinguishable from that seen in CN subjects. Thus, while

more data, in particular ‘‘omics’’ data,60 will be needed to deter-

mine whether the atrophy-centered subgroups we introduced

here are indeed real biological subtypes, our finding suggest

that the subgroups do not simply differ in their AD disease stage.

We examined the agreement between our atrophy-centered

data-driven subtyping approach and that obtained based on

neuropsychological assessments. The latter approach groups

subjects based on the similarity of their neuropsychological as-

sessments using clustering techniques, and thus goes beyond

the more traditional amnestic/non-amnestic MCI subgrouping

studied extensively in the literature.61 However, neuropsycho-

logical and biomarker profiles are strongly heterogeneous in

subjects who can be classified as having amnestic MCI,62 and

empirically derived subtyping approaches depict heterogeneity

that is not captured by conventional criteria.15 In our analysis,

we found that the cluster-derived normal group, where cognitive

function is unimpaired, was more predominant in the MCI-CN

than the MCI-AD subgroups (see Figure 6B). Moreover, while

the amnestic MCI profile showed a similar distribution in the
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two subgroups, dysnomic or dysexecutive subtypes were pri-

marily represented in theMCI-AD subgroup. Overall, our findings

demonstrate that the matching between the two subtyping ap-

proaches is incomplete. Future research could attempt to

combine the two approaches, to achieve neuropsychologically

distinct subgroups, that show differing patterns of brain atrophy.

In conclusion, the current study demonstrates that patterns of

GM atrophy are sufficient for subtyping MCI into biologically and

clinically distinct subgroups. These results further highlight the

need to consider the heterogeneity of MCI when attempting to

understand the pathological mechanisms of dementia, while

providing a potential tool for individualized disease prognosis.

Limitations of the study
Several limitations should be noted when considering the current

results. First, in this proof-of-concept stage,we used atrophy pat-

terns to subtype MCI into two distinct subgroups. We acknowl-

edge that a largernumber of subgroupswouldbeneeded tobetter

capture the different pathways of progression from prodromal to

clinical AD. In principle, our approach could be easily modified

to output more than two subgroups; however, we believe that a

larger number of MCI subjects than that used here, and/or the in-

clusion of data frommultiple cohorts would be needed in order to

achieve robust and generalizable results. This could hopefully be

achieved in future research. Second, as also noted above, we did

not attempt to combine neuropsychological and atrophy-

centered features in the current study, primarily as our major

motivation was to examine whether the latter type of features is

sufficient in subtyping MCI. Future research could extend our

approach to test whether a combination of cognitive and neurobi-

ological features better captures the heterogeneity of MCI.
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R: A Language and Environment for

Statistical Computing.

R Foundation for Statistical Computing,

2016

(Continued on next page)

Cell Reports Medicine 2, 100467, December 21, 2021 e1

https://github.com/rlckd/MCI-subtype
https://www.R-project.org
https://ggplot2.tidyverse.org/
https://dplyr.tidyverse.org/
https://github.com/atorus-research/Tplyr
https://github.com/cran/WRS2
https://github.com/HenrikBengtsson/R.matlab
https://github.com/HenrikBengtsson/R.matlab
https://www.tidyverse.org/
https://github.com/therneau/survival
https://rpkgs.datanovia.com/survminer/


Continued

Reagent or resource Source Identifier

ggforce_0.3.2 R Core Team https://ggforce.data-imaginist.com/

R: A Language and Environment for

Statistical Computing.

R Foundation for Statistical Computing,

2016

ggseg_1.5.5 R Core Team https://github.com/ggseg/ggseg

R: A Language and Environment for

Statistical Computing.

R Foundation for Statistical Computing,

2016

R_rainclouds.r R Core Team https://github.com/RainCloudPlots

R: A Language and Environment for

Statistical Computing.

R Foundation for Statistical Computing,

2016

Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Eran Dayan

(eran_dayan@med.unc.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All raw data including MRI, CSF, and cognitive scores are available through the ADNI data archive (http://adni.loni.ucs.edu/). Data

used for validation is available from the OASIS dataset (https://www.oasis-brains.org).

The custom code for training the deep learning model was written in Python with TensorFlow 2.0. The code is available publicly:

https://github.com/rlckd/MCI-subtype. Any additional information required to reanalyze the data reported in this work is available

from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

In this study, we subtyped MCI subjects using a deep learning approach, based on patterns of brain structural atrophy, derived from

MRI. We then validated the model’s output (i.e., subgroups) using CSF biomarker, PET and cognitive/clinical data. Specifically, we

trained a dense CNN,29 to differentiate data from AD and CN subjects based on whole brain atrophy patterns. To provide the model

with adequate well-defined training data, all AD subjects were A+ and T+, that is, they had abnormal levels of CSF A b42 and p-tau181.

CN subjectswere all A� and T�, in otherwords, they showed normal levels in the sameCSFbiomarkers. Previously determined cutoff

values63 for abnormal Ab42 (Ab42 < 976.6pg/ml) and p-tau181 (p-tau181 > 21.8pg/ml) were used. We reasoned that training the model

with well-differentiated AD (A+T+) and CN (A�T�) data would allow the model to learn a more discriminative set of pathological fea-

tures.We then deployed the trainedCNN to classifyMCI subjects (n= 380), as either AD-like or CN-like.We subsequently validated the

model’s output labels with baseline molecular and metabolic neuroimaging, cognitive scales and tests and CSF biomarkers, given

strong associations between atrophy, tau, and amyloid burden and cognitive performance (e.g.,64,65). We additionally examined lon-

gitudinal changes in cognitive scores (betweenbaseline and the2ndyear follow-up visit, whichwas the latest visitwhere imputation for

missing data could be achieved reliably) and calculated disease-free survival in the MCI-AD and MCI-CN subgroups, to assess dif-

ferences in the progression to AD. To test the generalizability of our subtyping model, we also investigated longitudinal changes in

cognitive performance in an independent cohort (n=78;OASIS-3dataset), whereMCI subtypingwasapplied as in theoriginal dataset.

Finally, we identified themajor regions (lobes) contributing to the performance of themodel through occlusion analysis27 (see below),

and assessed the intersection between the modeling-based labels and those obtained through cognitive subtyping.

Subjects
Data used in the preparation of this study were obtained from the ADNI andOASIS-3 databases. The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether
e2 Cell Reports Medicine 2, 100467, December 21, 2021
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serial MRI, other biological markers, and clinical and neuropsychological assessments can be combined to measure the progression

of MCI and early AD. For up-to-date information, see http://adni.loni.usc.edu/. The OASIS-3 dataset was used to test the validity of

our subtyping model. OASIS-3 is a longitudinal neuroimaging, neuropsychological, clinical and biomarker dataset for normal aging

and AD (https://www.oasis-brains.org/). The dataset includes participants enrolled through Washington University in St. Louis’

Knight Alzheimer Research Center. We used AD (n= 110) and CN (n= 109) data from ADNI to train the proposed deep learning model.

Then, we subtyped MCI (n= 380) into subgroups, validating the model’s output with cognitive scores, CSF biomarker levels and PET

uptake available in the same subjects. We excluded MCI subjects who reverted to CN status during follow-up. Additionally, one sub-

ject had no FDG-PET uptake data, while 20 subjects were excluded from the longitudinal analysis of cognitive performance since

they had data in less than 3 testing time points. Missing data at the 2nd year follow-up was imputed using linear interpolation/extrap-

olation. Data from the OASIS-3 dataset included a sample of 78 subjects with MCI. MMSE scores were extracted for each of the

subjects in this dataset. Linear interpolation/extrapolation was used based on at least 2 time points to estimateMMSE scores 2 years

after baseline (and thus match the time frame considered for subjects in the ADNI dataset). All subjects provided written informed

consent and the studies’ protocols were approved by the local Institutional Review Boards.

METHOD DETAILS

Image acquisition
Structural MRI data used in the deep learning model were acquired at ADNI sites using 3T scanners and were based on either an

inversion recovery-fast spoiled gradient recalled (IR-SPGR) or magnetization-prepared rapid gradient-echo (MP-RAGE) se-

quences.66 Ab-PET data were acquired in a 20-min dynamic emission scan, composed of four 5-min frames. The data was acquired

50–70 min after the injection of 10.0 mCi of [18F]-AV45. FDG-PET data were acquired in a 30-min dynamic emission scan, composed

of six 5-min frames. The data was acquired 30–60 min after the injection of 5.0 mCi of [18F]-FDG. PET data ran through a strict quality

control procedure to assess image quality. Standardized image preprocessing correction steps were applied to produce uniform

data across the ADNI PET cores. These steps included frame co-registration, averaging across the dynamic range, and standard-

ization with respect to orientation, voxel size, and intensity. Full details of the T1 and PET acquisition parameters and imaging pro-

cessing steps are listed on the ADNI website (http://adni.loni.usc.edu/methods/). In the independent validation dataset (OASIS-3),

structural MRI data were collected on 2 different Siemens 3T scanner, using MP-RAGE sequences (TR= 2.4ms; TE= 3.2ms; flip

angle= 8 �; voxel size= 1 3 13 1 mm3).

CSF collection
CSFcollection, shipping, aliquoting, storageaswell asanalysis followedADNI’s standardizedprocedures (http://adni.loni.usc.edu/).67,68

CollectedCSF sampleswere frozen ondry ice right after collection (within 1 hour). The sampleswere then shipped overnight, also ondry

ice, to the ADNI Biomarker Core laboratory at the University of Pennsylvania. Aliquots (0.5mL)were prepared from the CSF samples and

were then stored at�80 �C in barcode-labeled polypropylene vials. Samples for Ab42 and p-tau181 were thenmeasured using Elecsys

immunoassays. The lower and upper technical limits for the Elecsys Ab42 CSF immunoassay were 200 to 1700pg/mL. The limits for the

Elecsys p-tau181 CSF immunoassay were 8 to 120pg/mL.

Image processing
The deep learning model used for subtyping MCI data utilized whole brain GM data. MRI data were analyzed using Statistical Para-

metric Mapping 12 (SPM12; Wellcome Department of Imaging Neuroscience, Institute of Neurology, London, UK; https://www.fil.

ion.ucl.ac.uk/spm) running on MATLAB 9.8.0 (Math-Works, Natick, MA, USA). GM morphometric data was chosen as input data in

our model due to its wide use in studies focusing on the pathological and clinical progression of AD.69–74 Briefly, all MR images

were aligned to the anterior commissure and segmented into GM, white matter and CSF using the unified segmentation proced-

ure,75 implemented in SPM12. To improve the registration of the GM maps, we used the diffeomorphic anatomic registration

through an exponentiated lie algebra algorithm (DARTEL).76 This resulted in more precise spatial normalization to the template.

The DARTEL used subject-specific deformation fields to warp the GM map into subject-specific space, resampled at 2mm

isotropic voxels. Then the warped GM maps were affine transformed into Montreal Neurological Institute (MNI) space. In addition

to using whole brain GM volume data, we evaluated lobar contribution to the performance of the deep learning model through oc-

clusion analysis (see below).

PET imaging data was used to validate the MCI subgroups outputted by the deep learning model. Detailed acquisition and stan-

dardized pre-processing procedures used with the PET images are available at the ADNI website (http://adni.loni.usc.edu/methods/

). Ab-PET uptake was calculated by averaging across 4 cortical regions (frontal, anterior cingulate, precuneus, and parietal cortex)

relative to thewhole cerebellum region.33 Similarly, FDG-PET uptake was calculated by averaging across a set of pre-defined regions

(angular gyrus, posterior cingulate, inferior temporal gyrus) relative to pons/vermis reference regions.77

Deep learning model architecture
Model architecture: The deep learning model used for subtyping of MCI (See Figure 1) was based on the DenseNet architecture.29

It consisted of a convolutional layer, 4 dense blocks, 3 transition layers, a global averaging pooling layer and a fully-connected
Cell Reports Medicine 2, 100467, December 21, 2021 e3

http://adni.loni.usc.edu/
https://www.oasis-brains.org/
http://adni.loni.usc.edu/methods/
http://adni.loni.usc.edu/
https://www.fil.ion.ucl.ac.uk/spm
https://www.fil.ion.ucl.ac.uk/spm
http://adni.loni.usc.edu/methods/


Article
ll

OPEN ACCESS
layer. This convolutional neural network architecture was chosen as it shows excellent feature propagation and classification per-

formance while alleviating the vanishing gradient problem and significantly reducing the number of parameters used by the

model.29 First, the whole brain image with dimensions of 91 3 1093 91 was passed through a stack of convolutional layers, where

the filters were of size 53 53 5. The convolution stride was set to 1 voxel, while the size of the max-pooling layer was 23 23 2,

with a kernel size set at 23 23 2. The dense block consisted of multiple convolution units, which were equipped with a batch

normalization layer, leaky rectified linear unit, a 13 13 1 convolutional layer, a 53 53 5 convolutional layer and a dropout layer.

Every convolutional unit was connected to all the previous layers via shortcut connections. Dimensionality reduction of feature

maps between dense blocks was achieved through the transition layer. The transition layer included a batch normalization layer,

a leaky rectified linear unit, a convolutional layer of size 13 13 1, and an averaging pooling layer of size 23 23 2. The global aver-

aging pooling layer was then concatenated and connected through a fully-connected layer. The model’s output values were pro-

cessed by the fully-connected layer which used a sigmoid activation function. The output layer mapped all values greater than 0.5

as 1 (positive class: MCI-AD) and all values less than or equal to 0.5 as 0 (negative class: MCI-CN), while testing MCI data based on

the pre-trained model (Figure 1).

Implementation
The Keras application programming interface in TensorFlow 2.0 was used for building the deep learning model. Model training and

testing were performed in a parallelized manner with an Ubuntu 18.04.3 operating system, utilizing two Nvidia Tesla V100 graphic

cards with 16GBmemory each. The model was trained with a mini-batch size of 24 and 200 epochs, and optimized using stochastic

gradient descent based on adaptive estimation of first- and second-order moments78 and an exponentially decaying learning rate.

The initial learning rate was set at 0.0001 and decayed by 0.9 after every 10000 steps. A dropout layer was added to the dense block,

with the dropout rate set to 0.2. In the batch normalization step, beta and gammaweights were initialized with L2 regularization set at

1 3 10�4 and epsilon set to 1.1 3 10�5. In the fully-connected layer, the L2 regularization penalty coefficient was set at 0.01. We

observed stability in the model after an iteration of 150 epochs.

Model comparison
We compared the performance of the deep learning model to the performance of 3 widely-used machine learning models, including

support vector machine,79 logistic regression,80 and random forest,81 all available in the scikit-learn library. Similar to the training of

the deep learningmodel, whole-brain GMmapswere used as features, and 5-fold cross-validation was used during training. Support

vector machine classification was performed, adopting a soft margin with a Gaussian radial basis function. Logistic regression was

initiated by setting the penalty to ‘‘L2’’ for regularization, and other hyper-parameters were set at default settings. Random forest

classification was used with default settings as well.

Occlusion analysis
To identify the more specific regional contribution to the performance of the deep learning model and the differentiation between the

two MCI subgroups, we integrated occlusion analysis (e.g.,82) into the classification framework. Cortical regions were first

segmented with an automated segmentation tool available in FreeSurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/), resulting in a

parcellation of the cerebral cortex into 34 sulcal and gyral regions of interest (ROI) per hemisphere, according to the Desikan-Killiany

protocol.83,84 We then merged individual ROIs to 6 lobes: frontal, parietal, medial temporal, lateral temporal, occipital, and cingu-

late.85 These ROIs were then masked out (setting their voxels to zero) from the testing phase’s input data (Figure 4A). We evaluated

the performance of the different models (i.e., with each occluded lobe), relative to the intact model, quantifying the percentage of

change in the model’s accuracy in reference to the original results.

Clustering based on neuropsychological assessments
Neuropsychological testing was comprised of six measures assessing three different cognitive domains: (1) Memory: Rey auditory

verbal learning test (RAVLT),86 30-minute delayed free recall and the RAVLT recognition test. (2) Language: Animal fluency87 and the

30-item Boston naming test total score.88 (3) Attention/Executive: Trail making test (TMT),89 part A and part B. Similar to previous

research15 raw scores in these neuropsychological measures were used to cluster MCI subjects into subgroups. Raw scores

were first transformed into age- and education-adjusted z-scores based on means and standard deviations in each measure, calcu-

lated in the CN group. Then, an agglomerative hierarchical clustering analysis was performed on the z-scores using Ward’s

method.90 The clustering analysis resulted in four distinct subgroups15: amnestic MCI, dysnomic MCI, dysexecutive MCI, and clus-

ter-derived normal group.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed using the R statistical software, version 4.0.2 (https://www.r-project.org). Group differences in contin-

uous variables were analyzed with an ANOVA or with independent-sample t tests. ANOVAs were followed, when relevant, by Tukey

post hoc comparisons. Chi-square tests were applied to evaluate differences in categorical variables. Longitudinal data were

analyzed using the R WRS2 package,91 and were based on a repeated-measures analysis of variance (RM-ANOVA), with group
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(MCI-AD, MCI-CN) serving as the between-subjects factor and time (baseline, follow-up) as the within-subject factor. Mauchly’s test

was applied to test for violations in the assumption of sphericity, followed by Greenhouse-Geisser corrections, if necessary. A

Kaplan-Meier survival curve was generated to estimate the time to AD diagnosis based on information from follow-up visits. A log

rank test was used to compare survival curves between the subgroups. The plots for comparing cognitive scores, PET, and CSF

between subgroups were based on the R RainCloudPlots package.92 Regional imaging results were displayed on a surface using

the R ggseg (https://ggseg.github.io/ggseg/) package.
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